Endoscopic Cystoventriculostomy and Ventriculo-Cysternostomy Using a 2.0 micron Fiber Guided cw Laser in Children with Hydrocephalus
Proceedings Volume 5863, Therapeutic Laser Applications and Laser-Tissue Interactions II; 58630H (2005) https://doi.org/10.1117/12.633083
Authors: Hans C. Ludwig, Thomas Kruschat1, Torsten Knobloch, Kevin M. Rostasy, Heinrich O. Teichmann, Michael Buchfelder; Dept. Neurological Surgery and 2 Dept. Pediatric Neurology, Georg-August-University, Goettingen, Germany, 3 LISA Laser Products, Katlenburg, Germany.
ABSTRACT: Preterm infants have a high incidence of post hemorrhagic or post infectious hydrocephalus often associated with ventricular or arachnoic cysts which carry a high risk of entrapment of cerebrospinal fluid (CSF). In these cases fenestration and opening of windows within the separating membranes are neurosurgical options. In occlusive hydrocephalus caused by aquaeductal stenosis 3rd ventriculostomy is the primary choice of the operative procedures. Although Nd:YAG and diode lasers have already been used in neuroendoscopic procedures, neurosurgeons avoid the use of high energy lasers in proximity to vital structures because of potential side effects.
We have used a recently developed diode pumped solid state (DPSS) laser emitting light at a wavelength of 2.0 micron (Revolix TM LISA laser products, Katlenburg, Germany), which can be delivered through silica fibres towards endoscopic targets. From July 2002 until May 2005 22 endoscopic procedures in 20 consecutive patients (age 3 months to 12 years old) were performed. Most children suffered from complex post hemorrhagic and post infectious hydrocephalus, in whom ventriculoperitoneal shunt devices failed to restore a CSF equilibrium due to entrapment of CSF pathways by the cysts.
We used two different endoscopes, a 6 mm Neuroendoscope (Braun Aesculap, Melsungen, Germany) and a 4 mm miniature Neuroscope (Storz, Tuttlingen, Germany). The endoscopes were connected to a standard camera and TV monitor, the laser energy was introduced through a 365 micron core diameter bare ended silica fibre (PercuFib, LISA laser products, Katlenburg, Germany) through the endoscope’s working channel. The continuous wave laser was operated at power levels from 5 to 15 Watt in continuous and chopped mode. The frequency of the laser in chopped mode was varied between 5 and 20 Hz.
All patients tolerated the procedure well. No immediate or long term side effects were noted. In 3 patients with cystic compression of the 4th ventricle, insertion of a shunt device could be avoided. All 3rd ventriculostomies were sufficient for therapy of hydrocephalus, postoperatively MRI scans showed a bright flow void signal. The authors conclude that the use of the new Revolix™ laser enables safe and effective procedures in neuroendoscopy.